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We present a theory of information expressed solely in terms of which 
transformations of physical systems are possible and which are impossible – 
i.e. in constructor-theoretic terms. Although it includes conjectured laws of 
physics that are directly about information, independently of the details of 
particular physical instantiations, it does not regard information as an a priori 
mathematical or logical concept, but as something whose nature and 
properties are determined by the laws of physics alone.  It does not suffer from 
the circularity at the foundations of existing information theory (namely that 
information and distinguishability are each defined in terms of the other). It 
explains the relationship between classical and quantum information, and 
reveals the single, constructor-theoretic property underlying the most 
distinctive phenomena associated with the latter, including the lack of in-
principle distinguishability of some states, the impossibility of cloning, the 
existence of pairs of variables that cannot simultaneously have sharp values, 
the fact that measurement processes can be both deterministic and 
unpredictable, the irreducible perturbation caused by measurement, and 
entanglement (locally inaccessible information). 

1 Introduction 

In some respects, information is a qualitatively different sort of entity from all others in 

terms of which the physical sciences describe the world. It is not, for instance, a function 

only of tensor fields on spacetime (as general relativity requires all physical quantities to 

be), nor is it a quantum-mechanical observable.  

But in other respects, information does resemble some of the entities that appear in laws of 

physics: there are universal laws, such as those of the (quantum) theory of computation, 

and of statistical mechanics, that seem to refer directly to it without regard to the specific 

media in which it is instantiated, just as conservation laws do for energy and charge. We 

call that the substrate-independence of information. Information can also be moved from one 
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type of medium to another while retaining all its properties qua information. We call this 

its interoperability property. It is what makes human capabilities such as language, science 

and mathematics possible, as well as biological adaptations that use symbolic codes, such 

as the DNA-protein synthesis system.  

Also, information is of the essence in preparation and measurement, both of which are 

necessary for testing scientific theories. The output of a measurement is information, 

specifying an attribute of the input system; the output of a preparation is a physical 

system with an attribute specified by information in the input. 

All these applications of information involve abstraction, in that one entity is represented 

symbolically by another. But information is not abstract in the same sense as, say, the set 

of all prime numbers, for it only exists when it is physically instantiated. So the laws 

governing it, like those governing computation, but unlike those governing prime 

numbers, are laws of physics. In this paper we conjecture what these laws are. 

Yet, despite being physical, information also has a counter-factual character: an object in a 

particular physical state cannot be said to carry information unless it could have been in a 

different state. As Weaver (1949) put it,  

…this word ‘information’ in communication theory relates not so much to 
what you do say, as to what you could say. That is, information is a measure of 
one's freedom of choice when one selects a message. 

The classical theory of information (Shannon 1948) was indeed developed to analyse the 

physics of communication, where the objective is for a receiver to receive a message from a 

transmitter through a medium of communication. The receiver, transmitter and medium are 

all physical systems, but the message is not. It is information, which is initially instantiated 

in the transmitter, then in the medium, and then in the receiver. Thus the overall process is 

that of a measurement of one of the transmitter’s physical variables, embodying the 

message. It is essential to this notion of communication that a message be one of at least 

two possible messages, which are distinguishable by measurement, and that the receiver 



3 
 

then be able to transmit the same information to a further receiver while retaining an 

instance of it. That requires a non-perturbing measurement, distinguishing the possible 

messages, at some point in the process. 

Much of Shannon’s theory is about unreliable transmission and measurement processes, 

and inefficient representations, and how to compose them into more reliable and efficient 

ones. But here we are concerned with the fundamental issues that remain even in the 

limiting case when all error rates have been reduced to their physically possible minima 

and there is no redundancy in the message being transmitted. In that limit, receiving the 

message only means distinguishing it, with arbitrarily small error, from all the other 

possible messages. And in that regard, Shannon’s theory is inadequate in two ways. The 

first is that it cannot describe information in quantum physics, because the prohibitions 

that quantum theory imposes – such as the impossibility of cloning, the limits on the 

distinguishability of states, and the irreducible perturbation of one observable caused by 

measuring another – all violate the kind of interoperability that is assumed in Shannon’s 

theory. Consequently the type of information studied by Shannon is now sometimes 

called classical information.  

The second is that Shannon’s theory postulates that information is stored in 

distinguishable states, but does not specify what distinguishing consists of physically. To 

see why this, too, is inadequate, consider the non-perturbing measurement process that 

distinguishes two possible messages x and y during a communication. It has the following 

effects in those two cases: 

 

  

message receiver message receiver

x x0 ! x x

y x0 ! y y
  (1) 

where x0 is a receptive state of some medium capable of instantiating the outcome x or y. 

But this does not in fact distinguish message x from message y unless the receiver states x 
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and y are themselves distinguishable. Therefore (1), considered as a definition of 

distinguishability, would be circular (or recursive and lacking a base for the recursion). 

Indeed, no existing theory of information provides a non-circular account of what it means 

for a set of physical states to be mutually distinguishable. The theory that we shall present 

here does (Section 4). 

Likewise quantum information theory, as it stands, never gets round to specifying what it 

is referring to as ‘quantum information’, nor its relation to Shannon-type ‘classical 

information’. It is not, despite the name, a theory of a new type of information, but only a 

collection of phenomena, predicted by quantum theory, that violate the laws of classical 

information. Hence a new theory of information is needed, within physics but at a deeper 

level than both quantum theory and Shannon’s theory. In this paper we argue that 

constructor theory (Deutsch 2013) is that theory.  

Previous attempts to incorporate information at a fundamental level into physics (e.g. 

Wheeler 1989) or at least into quantum theory (Clifton et al.  2003) have regarded 

information as being an a priori mathematical or logical concept. Our approach is the 

opposite. In the constructor theory of information the status of information within physics 

is analogous to that of (say) energy: given the laws of motion of physical objects, neither 

the concept of energy nor its conservation law are logically necessary for making 

predictions from initial data, yet our understanding of the physical world would be 

radically incomplete without them. Thus the conservation law, though not an a priori 

mathematical truth, provides an explanation of aspects of motion that is deeper than laws 

of motion. Indeed, the conservation law partially explains laws of motion as consequences 

of a deeper regularity in nature – so that, for example, we expect as-yet-undiscovered laws 

of motion to conserve energy too. It is a principle, namely a law of physics that expresses 

and explains constraints on other laws rather than on the behaviour of physical objects 
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directly. Nor are we attempting to derive quantum theory from more fundamental 

principles, (e.g. Wootters 1981, Hardy 2001, Clifton loc. cit. ).  

After setting out as much of constructor theory as we shall need, (section 2), we shall begin 

our search for a deeper theory of information by expressing, in precise, constructor-

theoretic terms, the concepts of computation, measurement and classical information that 

are already assumed, informally and sometimes tacitly, to be instantiated in the physical 

world (Sections 3-5). Then, in Section 6, we express the regularities that are already 

associated informally with classical information as exact, purely constructor-theoretic 

principles of physics – which turn out to be elegant and natural. In particular, we express 

prediction and testing in constructor-theoretic terms. In Section 7 we introduce 

superinformation media as information media on which certain tasks with a natural 

constructor-theoretic definition are impossible. In Section 8 we show that the most 

distinctive features of quantum information follow from the impossibility of those tasks. 

Quantum information then appears as an instance of superinformation. 

2 Constructor Theory  

The laws of constructor theory are all principles, which we conjecture are obeyed by all 

other theories expressing laws of physics, which we call, in this context, subsidiary theories. 

Principles of physics, being laws about other laws, do not make direct assertions about the 

outcomes of measurements. They are nevertheless experimentally testable: a principle P is 

refuted if some law violating P survives experimental tests while all rival laws conforming 

to P are refuted. 1 

The basic principle of constructor theory is that  

                                                
1 For example, early observations of beta decay satisfied the principle of the conservation of energy under 
the assumption that neutrinos were emitted, but violated it under the assumption that no undetected 
particle was emitted. The conservation law would have been refuted if the neutrino theory had failed 
experimental tests while some testable explanation predicting the destruction of energy survived. The 
supposed principle of parity invariance was refuted in just that way. 
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I.  All subsidiary theories are expressible entirely in terms of statements about 
which physical transformations are possible and which are impossible, and 
why.  

This is in contrast with the prevailing conception of fundamental physics, which seeks to 

explain the world in terms of initial conditions and laws of motion, and whose basic 

dichotomy is therefore between what happens and what does not.  

Principle I also rules out any reference to probability in fundamental laws of physics. So, 

for instance, ‘generalised probabilistic theories’ (e.g, Barrett 2007), are incompatible with it.  

Stochastic theories, in which probabilities interpolate between possible and impossible (or 

between happening and not happening), can only be descriptions at an emergent level. 

For how this happens in quantum theory, see Deutsch (1999) and Wallace (2003).  

Constructor theory analyses physical processes in terms of constructions, which are 

transformations involving, in general, two kinds of systems, playing different roles. One is 

the object causing the transformation, which we refer to as the constructor, and whose 

defining characteristic is that it remains unchanged in its ability to cause the 

transformation again. The other is the system being transformed, which may consist of one 

or more subsystems, the substrates of the construction:  

 !"#$%&!'&&()* %&+, !- .!,%* ,&('&+,
/- #,&(%0&- (

! "! ! ! ! ! 1 %&$%&!'&&()* %&+, !- .!,%* ,&('&+, ,  (2) 

where the constructor and the substrates jointly constitute an isolated system.  

By ‘attribute’ of a physical system we mean any part of its description, according to the 

laws of physics, that can possibly be changed. We represent it formally as the set of states 

in which the system has that attribute.  

An intrinsic attribute of a substrate is one that does not refer to any other specific substrate. 

For example, that an object !!" "  is at distance x from the object !!" 2  is not an intrinsic 

attribute of system !!" " , but the distance between !!" "  and !!" "  is an intrinsic attribute of the 
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combined system !!" " ! " # . In quantum theory, for example, the possible intrinsic attributes 

of a system correspond to the possible density operators for that system. The rest of the 

quantum state describes entanglement relationships with other systems. In a collection of 

qubits, say, ‘entangled with qubit m’ is not an intrinsic attribute of any qubit, but 

‘entangled with each other’ is a possible intrinsic attribute of a pair of qubits. 

Any set of disjoint attributes, we shall call a physical variable. Whenever a substrate is in a 

state with attribute  x ! X  where X is a variable, X is said to be sharp, with the value x.  

That individual physical systems (and not just the world as a whole) have states, attributes 

and variables in that sense is guaranteed by Einstein’s (1949) informal principle of locality 

(Einstein 1949), which has a precise expression in constructor-theoretic form:  

II.  There exists a mode of description such that the state of the combined 
system !!" " ! " #  of any two substrates !!" "  and !!S"  is the ordered pair !!"" ##$ of 
the states a of !!" "  and b of !!S" , and any construction undergone by !!" "  and 
not !!S"  can change only a and not b.  

In quantum theory, the Heisenberg picture is such a mode of description (Deutsch & 

Hayden 2000)1. This principle rules out, for example, non-linear Schrödinger equations, 

and other explicitly non-local modifications of quantum theory.  

The objects of Constructor theory are the specifications of only the input/output pairs in 

(2), with the constructor abstracted away: 

 !"#$%&!'&&()* %&+, !- .!,%* ,&('&+, ! "! / %&$%&!'&&()* %&+, !- .!,%* ,&('&+, .  

We call these construction tasks, or tasks for short. In general, a construction task  A  is a set 

of ordered pairs of intrinsic attributes of some substrates: 

 
 !!
A = ""

#
! #

#
$ "

%
! #

%
$&&&'. 

                                                
1 The controversy about whether the locality of quantum physics conceals some residual ‘non-locality’ 
(Wallace & Timpson 2007, Deutsch 2012) is not relevant here because principle II only requires changeable 
quantities to be local. 
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We call the 
 !! xi{ } = "#$A% the legitimate input attributes of  A  and the 

 !! yi{ } = " #$%A& the 

legitimate output attributes. The transpose of a task 
 !!A = " 1 → #1 ," 2 → #2 ,...{ }  is defined as 

 !!A
~ = " 1 ! #1 ," 2 ! #2 ,...{ } .  

A constructor is capable of performing a task  A  if, whenever presented with substrates 

having an attribute in  !"#$A%, it delivers them with one of the corresponding attributes 

from  !" #$%A&.  

Tasks may be composed into networks to form other tasks, as follows. The parallel 

composition  A ! B  of two tasks  A  and B  is the task whose net effect on a composite 

system !M ! N  is that of performing  A  on M and B  on N. And when   Out A( ) = In B( ) , 

the serial composition  BA  is the task whose net effect is that of performing  A  and then B  

on the same substrate.	
  A regular network of tasks is a network without loops whose nodes 

are tasks and whose lines are their substrates, where the set of legitimate input states at 

the end of each line is the set of legitimate output states at its beginning. Loops are 

excluded because a substrate on a loop is a constructor. 

It may be that a task 
!!

"" ##$! "$#%${ }  cannot be decomposed into ! " ! #{ } " $! %{ }  

because the individual attributes are not intrinsic and therefore the operands of that 

parallel composition are not valid tasks. However, if both !! "" ##$! "$#%${ }  and 
!

" ! #{ }  are 

valid tasks, then ! " ! #{ }  must be too.	
  

No perfect constructors exist in nature. Approximations to them, such as catalysts or 

robots, have non-zero error rates and also deteriorate with repeated use. But we call a task 

 A  possible (which we write as   A
! ) if the laws of nature impose no limit, short of 

perfection, on how accurately  A  could be performed, nor on how well things that are 

capable of approximately performing it could retain their ability to do so again. Otherwise 

 A  is impossible (which we write as   A
! ).  
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Consequently we must also understand the principle I as requiring every subsidiary 

theory to define a measure of the accuracy with which any approximate constructor 

described by that theory performs any task (including its own maintenance); and it must 

give a meaning to whether an infinite sequence of tasks   A1,A2 ,… on a system  S⊕E  

(where E might be the environment of S) converges to a limiting task  A  on S alone.  

A task always refers to an isolated system of constructor and substrates, so, for instance, 

heating a kettle of water is not a possible task on the water, but only on the combined 

system of the water plus a power supply, for which the kettle is then a constructor. But we 

are also often interested in what is possible or impossible regardless of the resources 

required. So we say that a task  A  is possible with side-effects, which we write as   A
! , if 

 ! "A ⊗ T #✓ , for some task  T  on some generic, naturally occurring substrate (see Section 6). 

A constructor-theoretic statement is one that refers only to substrates and which tasks on 

them are possible or impossible – not to constructors. Thus constructor theory is the theory 

that the laws of physics can be expressed without referring explicitly to constructors.  

3 Computation 

Our theory of information rests on first understanding computation in constructor-theoretic 

terms. This will allow us to express information in terms of computation; not vice-versa as 

is usually done. This is the key to avoiding the circularity at the foundations of 

information theory that we referred to in Section 1. 

Spontaneous changes in a substrate can be regarded as computations performed by a null 

constructor, so we need only to consider constructions on static attributes of substrates – 

attributes that are unchanging except when acted on by some constructor. 

A reversible computation   CΠ S( )  is the task of performing a permutation !  over some set S  

of at least two possible attributes of some substrate: 
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C! S( ) = {

x" S
∪ x # ! (x)} .   

For example, swapping two pure quantum states constitutes a reversible computation, 

and may be a possible task even if they are not orthogonal. We define a computation 

variable as a set S of two or more possible attributes for which   C!
!  for all permutations !  

over S, and a computation medium as a substrate with at least one computation variable. 

(Since side-effects are allowed in the performance of  CΠ , this definition does not require 

physical processes to be reversible.) 

4 Information 

As we mentioned in Section 1 the classical concept of information is intuitively associated 

with that of copying. The concept of information we are about to provide will express this 

intuition rigorously and without circularity, in terms of computations as defined in 

Section 3. We first consider computations involving two instances of the same substrate S. 

We define the cloning task for a set S of possible attributes of S as the task 

 
  !!
R

"
#
0( ) = #,#

0( ) ! #,#( ){ }
#" "
!   (3) 

on !" ⊕ " , where !!" 0  is some attribute with which it is possible to prepare S from generic, 

naturally occurring resources (Section 6 below). This is a generalisation of the usual notion 

of cloning, which is (3) with S as the set of all attributes of S. A set S is clonable if   !!RS"x#$
!  

for some such !!" 0 . 

An information variable is a clonable computation variable. An information medium is a 

substrate some of whose possible attributes constitute an information variable. An 

information attribute is one that is a member of an information variable. A substrate S 

instantiates classical information if some information variable S of S is sharp, and if giving it 

any of the other attributes in S was possible. If we define the classical information capacity 

of S as the logarithm of the cardinality of its largest information variable, the principle of 
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locality II implies the convenient property that the combined classical information 

capacity of disjoint substrates is the sum of their capacities.  

Thus we have provided the purely constructor-theoretic notion of classical information 

that we promised. But we have emancipated it from its dependence on classical physics, 

and cured its circularity. 

5 Measurement 

We can now do the same for distinguishability and measurement. A set X of possible 

attributes of a substrate S is distinguishable if	
    

 
 ! 

" →ψ "{ }
"∈#
!

⎛
⎝⎜

⎞
⎠⎟

!
,  (4) 

where the !!{ψ " }  constitute an information variable. Since ‘information variable’ is defined 

above without reference to distinguishability, this definition is, as promised, not circular. 

If a pair of attributes 
  

x, y{ }  is distinguishable we shall write  x ! y  (and  x ! y  if not).  

If the original substrate continues to exist and the process performing (4) stores its result in 

another substrate (which must therefore be an information medium), (4) is the condition 

for the variable X to be measurable: 

 
    

x,x0( )→ yx , ‘x’( ){ }
x∈X
!

⎛
⎝⎜

⎞
⎠⎟

!
, (5) 

where the second substrate is initially prepared with the ‘receptive’ attribute   x0  and ends 

up with an information attribute ‘x’ that physically represents the abstract outcome «it was 

x». We give quoted labels such as ‘x’ to output attributes corresponding to those in the 

variable being measured. Thus, measurement is like cloning (3) except that the output 

substrate is an information medium rather than a second instance of the substrate.  
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We shall call X the input variable of the measurer. The variable of the second substrate in 

which the measurer presents its output, we shall call the output variable. By ‘the’ output of 

a measurement we mean the output attribute of that second substrate. When we refer to a 

‘sharp’ output we mean that the output variable is sharp.   

A constructor is a measurer of X if there is some choice of its output variable, labelling, and 

receptive state, under which it is capable of performing (5). Consequently a measurer of X 

is automatically a measurer of a range of other variables because one can interpret it as 

such by re-labelling its outputs. (Such re-labellings must be possible tasks because they are 

classical computations on a finite set – see the Section 6.) For example, a measurer of X 

measures any subset of X, or any variable  !X  whose members are unions of attributes in 

X, in which case we call  !X  a coarsening of X.  

If  yx ! x  in (5), the measurement of X is non-perturbing, which is the type of measurement 

typically needed in computation and communication. It follows from the definition of 

information variables that the task of measuring them non-perturbatively is always 

possible.  

6 Conjectured principles of physics bearing on information 

Crucially, the most important properties of information do not follow from the definitions 

we have given. In this section we seek the constructor-theoretic principles of physics that 

determine those properties, of which most fundamental is perhaps the interoperability of 

classical information. This cannot even be stated in the prevailing conception of 

fundamental physics, but it has an elegant expression in constructor theory as the 

interoperability principle:  

III. The combination of two substrates with information variables !!" "  and !!" "  is a 
substrate with information variable !!" " ! " # , 
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where ×  denotes the Cartesian product of sets. Note that this principle requires certain 

interactions to exist in nature. For instance, it rules out theories of dark matter in which 

dark information media exist but interactions between the dark and normal sectors do not 

allow information to be copied arbitrarily well between them. 

Exploring the properties of distinguishability in a little more detail leads us to conjecture 

further such principles. Suppose that all attributes in a variable X are pairwise 

distinguishable; that is to say, 
  
! x " X,! y " X,x # y( )x $ y . It does not follow logically from 

the definitions that X is a distinguishable variable. But we conjecture that in physical 

reality, it always is. That is because we expect that whenever there is a regularity among 

observable phenomena in a substrate (such as distinguishability being transitive for a 

particular set of its attributes), that is always because the phenomena are related 

theoretically, by a unifying explanation – in this case, that they can all be distinguished by 

measuring some measurable variable (or equivalently, a set of simultaneously measurable 

variables). This, too, has an elegant statement as a purely constructor-theoretic principle: 

IV. If every pair of attributes in a variable X is distinguishable, then so is X. 

And similarly: 

V.  If every state with attribute y is distinguishable from an attribute x, then so 
is y. 

Though we conjecture that IV and V hold universally in nature, none of our conclusions in 

Section 8 depends on their being universal. It would suffice if they held only for a special 

class of substrates. The same also holds for the remaining conjectured principles (VI-VIII). 

Two of these are simplifying assumptions rather than grand conjectures about the nature 

of reality. But they might well be true, and are certainly good approximations for present 

purposes: First, since we are concerned with the nature and properties of information, not 
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its long-term future, we assume that unlimited resources are available for conversion into 

information storage devices. In constructor-theoretic terms we express this as:  

VI.  Any information medium, with any one of its information-instantiating 
attributes, is preparable from naturally occurring substrates that exist in 
unlimited numbers. 

We call such substrates ‘generic resources’ and in describing a task, we use the symbol g to 

represent a suitable generic resource for the task. Thus we have, for every task  A ,  

 
      A

! ! g,g,É( ) " CA{ } !!" , (6) 

where ‘ ! ’ denotes implication and   CA  is some constructor for  A . We can replace 

  g,g,É( )  by g in (6), since a collection of any finite number of generic resources is a 

generic resource. The assumption VI implies that there are generic, naturally occurring 

(approximations to) constructors too. Thus we also have 

 
    A

!!" ! " h( ) A # g $ h{ }( )! . (7) 

And finally we assume that unlimited resources are available for information processing 

too. We express this in constructor-theoretic terms as the conjectured composition principle 

(Deutsch 2013): 

VII.  Every regular network of possible tasks is a possible task, 

though here we need only assume that it holds for information-processing tasks. 

Provided that information exists at all, principles III, VI and VII imply that for every 

function f from a finite set of integers to itself, the task of computing f is possible. 

Measurement of non-sharp variables 

We have defined measurement of a variable X by the measurer’s effect (5) when X is 

sharp. But the term ‘measurement’ is also used to describe cases where X is not sharp. 

Exploring those cases will lead us to another constructor-theoretic principle about 

information.  
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We first define a convenient tool, the bar operation: let x be any attribute;  x  (‘x-bar’) is the 

union of all attributes that are distinguishable from x. Principle IV allows us to assign the 

natural meaning   X ≡ ! x∈X x  where X is a variable. (Thus in our notation any expression 

topped by a bar denotes an attribute.) When  X  is empty, we call X a maximal variable. 

The bar operation has a closure property  x ≡ x . For we have  x ! x  (since 

distinguishability is symmetric), i.e.   x = x∪ y  for some y. Similarly,   x = x ∪ z  for some  z  

that does not overlap with  x . Since, by definition, z contains only states distinguishable 

from  x ; and since  x ! x , each such state is also distinguishable from x. Hence  z  is empty 

and  x ≡ x .  

Any variable of the form 
  x,x{ }  we shall call a Boolean variable. Such variables are central 

to the development of the theory. Principle IV and the definition of bar trivially imply that 

every Boolean variable is distinguishable1. Also, every Boolean variable is maximal, since 

no attribute y can be distinguishable from both x and  x , for if  y ⊥ x , we would have  y ! x  

and hence  y ! x .  

Now consider an attribute {a} in which X is non-sharp. A trivial case is when   {a} ! X ; in 

that case, by principle IV, there is a distinguishable variable that includes X that is sharp. 

But suppose instead that   {a} ! X , so that   {a} ! X  (which includes all cases when X 

maximal, because then  X  includes all states). Whether it is then still possible for X not to 

be sharp in the state a, and what it means if that is so, is up to the subsidiary theories. (For 

instance, in quantum theory it would mean that a was a superposition or mixture of the 

states with attributes in X. The generalisation of this to constructor theory will be 

discussed in Section 8.5.) In general, constructor-theoretic terms it must at least imply that 

the output variable of every measurer of X must either be non-sharp, or sharp with some 

value ‘x’ where  x ! X , which means that the measurer could mistake the attribute {a} for 
                                                
1 For the sake of uniformity of notation we include cases where  x  is empty, even though   x,x{ }  is not 
literally variable in those cases. But since the empty set is an attribute that no substrate can possibly have, 
every state is distinguishable from it; hence in such cases  x  is the set of all states. A trivial constructor that 
produces a fixed result, which can then be labelled ‘x’ in (5) then qualifies as a distinguisher of   x,x{ } . 
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one having an attribute in X. For if some measurer of X could not make such a mistake, it 

could distinguish {a} from all attributes in X, contradicting   {a} ! X .  

Consider the case when the output variable of a particular measurer of X is sharp with 

value, say, ‘x’, when the measurer is presented with   {a}⊆ X . That means that that 

measurer can mistake {a} for only one attribute in X, namely x. Thus it is also a measurer 

of another variable, namely the variant of X with the attribute x replaced by    x ! {a} . 

Similarly we can construct a variable Z by augmenting each attribute  x ∈X  with all the 

states a with   {a}⊆ X  that can be mistaken only for x by that measurer. Thus we see that 

the measurer was really a measurer of Z all along, with the additional property that 

whenever it produces any sharp output ‘z’ on measuring its substrate, the input substrate 

really had the attribute z. It is logically possible that applying this procedure for some 

other measurer of X would yield a different Z. But we propose the following principle of the 

consistency of measurement: 

VIII.  Whenever a measurer of a variable X would produce a sharp output when 
presented with the attribute   {a} ! X , all other measurers of X would too1. 

Consequently those other measurers of X would have to produce the same sharp output. 

For if one of them produced the output   Ôx1Õ for the input   {a} ! X , that would make {a} 

distinguishable from all attributes in X other than   x1 , and likewise if another produced a 

different sharp output   Ôx2Õ. So then {a} would be distinguishable from all  x ∈X , and 

would therefore (from IV) be included in  X  and hence not in  X  which is a contradiction. 

Thus, principle VIII implies that for any measurable variable X there is a unique variable 

Z such that all measurers of X are measurers of Z. Z therefore has the property that 

whenever a measurer of Z produces a sharp output   ÔzÕ the input substrate really has the 

                                                
1 Despite mentioning constructors (measurers) explicitly, VIII is still a purely constructor-theoretic 
statement, for it could be rephrased as ‘if the task of measuring X while producing an output ‘x’ (x�1 X) for an 
input   {a} ! X  is possible, the task of measuring X while not producing that output for the input {a} is 
impossible.’ 
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attribute z. We shall call such variables observables, and information observables if they are 

information variables. (Quantum-mechanical observables, in the Heisenberg picture, are 

indeed observables by that definition.) Properties of observables will be crucial for our 

theorems about superinformation (Section 8). 

Properties of observables 

We now obtain a necessary and sufficient condition for a variable to be an observable. 

Consider any attribute x, and any measurable variable X of which it is a member.  Now let 

!  be the union of all attributes in X, and consider the variable 
  !X = x," # x{ } , a coarsening 

of X. It must be measurable since any measurer of 
  

x,x{ }  measures it. In this section and in 

section 8.5 we shall repeatedly rely on the relations between measurers of X,  !X , and the 

two Boolean variables 
  

x,x{ }  and 
  

x ,x{ } , which are represented in Fig. 1.  

 

Fig. 1 Hierarchy of measurers of variables of which x is a member. 

First we prove that all such measurers must produce a sharp ‘x’ when presented with a 

substrate with the attribute  {a} ! x . By VIII, every measurer of 
  

x,x{ }  must deliver a sharp 

output ‘x’ for any input   {a} ! x , since all measurers of 
  

x ,x{ }  are measurers of 
  

x,x{ }  and 

would deliver a sharp   ÔxÕ, which could be reinterpreted as ‘x’. Any measurer of 
  

x,x{ }  

measures X’, and since the former produces a sharp output x when presented with  {a} ! x , 

by principle VIII, so do all measurers of  !X . Also, any measurer of X is a measurer of  !X . 

Therefore, in particular, any measurer of X must give a sharp output ‘x’, when presented 

with any input   {a} ! x . 

Measurers of X !

x,x{ }Measurers of !

x,x{ }Measurers of !

Measurers of XÕ!
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The converse is also true: if any measurer of a variable X (containing x) produces a sharp 

‘x’ when presented with a state   {a} ! X , then   {a} ! x . For suppose that given   {a} ! X , a 

measurer of X produces a sharp outcome ‘x’. Then, all of them produce a sharp ‘x’, by 

VIII. Again, any measurer of X is a measurer of  !X ; therefore, by VIII, all measurers of  !X  

must give the same sharp output ‘x’ when presented with   {a} ! X . By definition of  x , any 

measurer of 
  

x,x{ }  is, ipso facto, a measurer of  !X . Therefore, again by VIII, all measurers 

of 
  

x,x{ }  must give the sharp output ‘x’ when presented with   {a} ! X . This implies that 

  {a} ! x , i.e.,   {a} ! x . 

This elucidates the physical meaning of  x : it is the set of all states a with the property that, 

for any variable X containing the attribute x, a measurer of X produces a sharp output ‘x’ 

when presented with a substrate with the attribute   {a} ! X . And it also provides our 

necessary and sufficient condition for a variable to be an observable: it is that all its 

attributes x satisfy  x = x . 

Prediction, testing and ensembles 

Under constructor theory, a prediction is a statement that some construction is possible or 

impossible. A testable prediction is a statement that, following the preparation of a 

substrate with a given attribute, the output variable of a certain possible measurement will 

be sharp, with a certain value. That requirement of sharpness does not come from 

constructor theory. It is entailed by the logic of testability and it is why probabilistic 

predictions are tested by repeated measurements. 

For example, consider the testing of a fundamentally stochastic (and therefore 

incompatible with constructor theory) law of motion, which predicts the probability of an 

outcome of a measurement but not the outcome. Since probabilities of individual 

outcomes are not measurable on individual systems, such a prediction can be tested only 

if it is interpreted as a manner of speaking about non-probabilistic predictions about 
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measurements on ensembles, which can then be approximated by average results of finite 

sequences of measurements on individual systems. 

Analogously, the constructor theory of measurement and testing must concern itself with 

how to obtain sharp outputs in situations where the individual outputs of measurements 

are not sharp, either because a subsidiary theory predicts that, or at a practical level 

because perfectly accurate measurers do not exist. And again, most methods of doing that 

involve using multiple instances of a given substrate. 

We denote by   S
n( )  a physical system     S! S! É S

n instances! "# $#
 consisting of n instances of S, and we 

denote by  x
n( )  the attribute    x,x,É x( )

n  terms! "# $#
 of   S

n( ) . Evidently the set 
 

x n( ) x ! S{ }  is an 

information variable of   S
n( )  whenever S is an information variable of S. And each  x n( )  is a 

redundant instantiation of the information x.  

If, in conventional, probabilistic, information theory, S is a discrete set and each instance of 

S has a probability   p < 1
2  of having been changed from the correct value x by uncorrelated 

perturbations, the probability that a plurality of the values stored in n instances will not 

instantiate x falls exponentially with n. Although probabilities are not allowed at the 

fundamental level in constructor theory, redundancy can still play effectively the same 

role, in following way. Denote by   S
∞( )  an unlimited supply of instances of S. Suppose that 

they all have the same intrinsic, preparable attribute, either x or y, and let us call a 

sequence of experiments on   S
n( ) , as n increases without limit, an ‘experiment on an 

ensemble  S
∞( ) ’. Recall from Section 2 that a possible task is one for which the laws of 

nature impose no limit, short of perfection, on how well the task can be performed. Since 

our assumption VI implies that there is no limit on n, it follows that for any two intrinsic 

attributes x and y of a substrate S,  x
!( )  and  y

!( )  are either interchangeable in all 

experiments on  S
∞( )  (using generic resources), or distinguishable. For given such a supply, 

performing all possible experiments on (instances of) S, infinitely often, is a possible task. 

So if that cannot tell the difference between  x !( )  and  y
!( ) , nothing (that uses only generic 
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resources) can. If something can, we call x and y ensemble distinguishable. Thus we propose 

the principle: 

IX. Any two disjoint, intrinsic attributes are ensemble distinguishable. 

7 Superinformation 

So far in this paper we have proposed a set of purely constructor-theoretic principles that 

capture in an exact, subsidiary-theory-independent way the behaviour of ‘classical’ 

information. From here on, we propose no further principles. We investigate what 

happens if the subsidiary theories impose a single further prohibition on what tasks are 

possible. This turns out to allow substrates to instantiate what we call superinformation, 

and we shall show that quantum information is an instance of it. 

It follows from our theory so far that every subset with at least two members of an 

information observable S, is also an information observable. But the converse does not 

hold: the union of two information observables, even if their attributes are mutually 

disjoint, is not necessarily an information observable. It is through that loophole that all 

the non-classical content of information theory flows. 

A superinformation medium M is an information medium with at least two information 

observables that contain only mutually disjoint attributes and whose union S is not an 

information observable. For example, in quantum physics any set of two orthogonal states 

of a qubit constitutes an information observable, but no union of two or more such sets 

does: its members are not all distinguishable. M instantiates superinformation if it has one 

of the attributes in S but could have had any of the others. A supercomputation is a task that 

maps S to itself.  
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8 Properties of superinformation 

In what follows, let S be a superinformation medium and let X and Y be two of its 

information observables whose union   X ∪Y  includes mutually disjoint attributes but is 

not an information observable (and hence   X ∪Y  is not even an information variable). 

8.1 Not all information attributes of a superinformation medium are distinguishable 

There must exist information attributes  x ! X  and  y ! Y  such that  x ! y . For suppose 

that !x y for all  x ! X  and  y ! Y . This would imply that all attributes in   X ∪Y  are 

pairwise distinguishable and hence, from principle IV, that   X ∪Y  is a measurable 

variable. Each attribute in   X ∪Y  is also preparable, since by VI that is true of X and Y 

separately. It would follow that all permutations on   X ∪Y  are possible tasks. For, to 

perform ! , given S with any attribute   z ! X ! Y , one would first distinguish which 

attribute that is, thereby preparing some ancillary information medium with the 

information attribute ‘z’. Then one would compute   ! (ÔzÕ)  on the ancilla (that computation 

must be possible because the ancilla is computation medium). Then one would use that 

result to prepare, from generic substrates, another instance of S with the attribute ( )! z , 

which again must be possible by principle VI.  

The remaining condition for   X ∪Y  to be an information variable would be met too: the 

cloning task is possible (with side-effects). For if   X ∪Y  is a distinguishable set of S, 

   ( X ! Y) ! ( X ! Y)  is a distinguishable set of !S S: one can distinguish its members by 

performing a distinguishing operation on each instance of S in parallel and then 

combining the sharp outputs with a logical-or operation. Moreover, !X X , !X Y , !Y X  

and !Y Y , are all information variables of !S S , by the interoperability principle III. 

Therefore each attribute in their union    ( X ! Y) ! ( X ! Y)  is preparable. These two facts 

imply, by the argument above, that all permutations of    ( X ! Y) ! ( X ! Y)  are possible with 

side-effects. Since those permutations include the cloning tasks on   X ∪Y , it follows that 

  X ∪Y  is an information variable, which contradicts the condition for S to be a 

superinformation medium.  
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So there must exist a pair of attributes !x X  and !y Y  of S that are not distinguishable. 

8.2 Undetectability of sharpness 

It is impossible to measure whether the observable X or Y is sharp. For it were possible, 

then such a measurement would also distinguish between the above-mentioned x and y, 

which is impossible. (Of course sharpness is ensemble measurable, by IX, because none of 

the attributes in X intersects any attribute in Y.) 

8.3 Superinformation cannot be cloned 

Suppose that the cloning task (3) were possible for the variable   X ∪Y . Then in particular, 

any variable 
  

x, y{ }  with  x ! X  and !y Y could be cloned. Then, given our generic 

resources assumption VII, for each   z ! x, y{ }  it is possible to apply the cloning operation 

to the substrate any number of times, and the output would be a composite medium 

! ! ÉS S S  with the attribute ( ), , …z z z . Thus, preparing   z(! )  would be a possible task. 

The attributes x and y are intrinsic information attributes, so by assumption VI they are 

preparable, and therefore by principle IX the two possible attributes   z(! )  are ensemble 

distinguishable: ( ) ( )! !"x y . Thus by preparing   z(! )  from   x, y{ }  one can distinguish x from 

y.  

If all such pairs were clonable, it would follow that all attributes in   X ∪Y  were pairwise 

distinguishable. But, as shown in 8.1, that cannot be so, so the assumption that the 

superinformation variable   X ! Y  is clonable is false. 

8.4 Pairs of observables not simultaneously preparable or measurable 

The sets   x ! y  are all empty by the defining property of a superinformation medium: So 

when the substrate has any of the attributes  y ∈Y , X cannot be sharp, and vice versa; 

hence it is impossible to prepare S with its observables X and Y both sharp. For the same 

reason, simultaneously measuring X and Y is impossible.  

8.5 Unpredictability of deterministic processes 

Superinformation media exhibit the counter-intuitive property of evolving 

deterministically yet unpredictably.  
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Unpredictability arises when a measurer of X acts when X is non-sharp. Suppose that X is 

maximal, whereby  y ! X . If a substrate with attribute y is presented to a measurer of X, 

the output variable cannot be sharp. For if it were, with value ‘x’, the properties of 

observables (Section 6), would imply that  y ! x ; yet x and y are non-overlapping by 

hypothesis. Thus, no prediction of the form «the outcome will be ‘x’», where  x ! X , can be 

true, since that would imply that the output variable of the measurer, when presented 

with y, is sharp. That already means that the outcome of a measurement of X, when the 

substrate has the attribute y, is unpredictable. Remarkably, the constructor theory of 

information also provides a definite physical meaning for this unpredictability, even when 

the relevant subsidiary theories give no meaning to probabilities.  

As a guide to the general constructor-theoretic case, let us consider an example. In 

quantum theory, an observable such as X would be the number of photons in a cavity, 

  
öN = 1 1 + 2 2 2 + 3 3 3 +É  The only way in which   öN  can fail to be sharp when the 

photon field in the cavity has some attribute y is that y is some set of superpositions or 

mixtures of two or more eigenstates of   öN , e.g. those with eigenvalue less than, say, 3. In 

such a case, when  öN  is measured, no prediction of the form «the outcome will be ‘n’» (for 

some eigenvalue n of   öN ) would be true. But there are other predictions that must be true: 

any pure state !  in y has the property that the expectation value of the projector 

 
0 0 + 1 1 + 2 2  is 1 in ! . Therefore, the prediction that a measurer of 

 
0 0 + 1 1 + 2 2  would yield the outcome ‘1’, when presented with !  would be true. 

Thus, since 
 
0 0 + 1 1 + 2 2  is a Boolean observable whose meaning is  «whether there 

are fewer than 3 photons in the cavity» (with 1 denoting yes and 0 no), the fact that the 

outcome of a measurement of   öN  would be less than 3 is predictable, even though 

predicting the outcome itself is an impossible task. This is the physical meaning for 

unpredictability in the quantum case. 
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The same logic applies equally in constructor-theory, as we shall now explain, without the 

apparatus of projectors, expectation values and probabilities.  

Let χ  again be the union of all attributes in X and  ! y  be the union of all attributes in X that 

are not distinguishable from y (by the defining properties of superinformation, there must 

exist at least one such attribute). Our goal is now to explain that the Boolean observable 

  
! y , ! y{ }  plays the same role as the above projector. We start by showing that it must be 

sharp with value 
  
Ôχy Õ when the substrate has the attribute y. 

Consider any attribute   {a} ! y . Any measurer of the Boolean variable 
  ! " ! y , ! " ! y{ } , 

when presented with a substrate with that attribute, will produce a sharp output   
Ô! " ! y

Õ
 

because 
 
y ! " # " y  (by definition of  ! y ). Any measurer of 

  ! " ! y , ! " ! y{ }  is also a 

measurer of the (maximal) variable 
  ! " ! y , ! y{ } , (because  ! y " ! # ! y ). Hence by principle 

VIII all measurers of 
  

! y , ! " ! y{ }  must give a sharp output 
  Ôχy Õ when presented with 

  {a} ! y . By the properties of observables (section 6), we conclude that 
  
{a}⊆ χy .  Since this 

is true for any state in y, it must be true of y too:  y ! " y . Therefore, again by the result of 

section 6, when the attribute is y, 
  

! y , ! y{ }  must be sharp with value 
 
! y  .  

Consider now the observable   Xy = x ∈X : x ⊥ y{ }  (noting that  χy = Xy ). First, it must 

contain at least two attributes.  For suppose all the attributes in X except x were 

distinguishable from y. Then 
 
χy = x , so that y would be included in  x . But this is a 

contradiction, because this would imply that  y ⊆ x  (since X is an observable). 

We can now see why 
  
χy ,χy{ }  

generalises the projector in the quantum example. One way 

of measuring   ! y , ! y{ }  is to measure X first and then to perform a computation on the 

output ‘x’ that would, if X were sharp in the input, determine whether 
 
x ! Xy  or not. All 

such measurers must, by the principle of consistency of measurement VIII, give a sharp 

  ‘! y ’
 
when presented with any attribute in  ! y ; hence they are all measurers of 

  
! y , ! y{ }  

too. Thus 
  

! y , ! y{ }  is a Boolean observable whose meaning is «whether the outcome is one 

of the ‘x’ with  x ! y ». Since 
 
y ! " y , that process, by principle VIII, must yield the same 
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sharp output 
  
Ôχy Õ , meaning ‘yes’, as any other measurer of 

  
χy ,χy{ } ,

 when presented with 

y. As in the quantum case, this provides the physical meaning of unpredictability: Any 

constructor (including any observer) that measures X on a substrate with attribute y and 

then computes (or recollects) whether the outcome was one of the ‘x’ with  x ! y , by the 

above procedure, will reach the conclusion ‘yes’ (corresponding to 
  
Ôχy Õ); And will thereby 

have the same attribute as it would have if X had been sharp with some value 
 
x ! Xy . Yet 

no prediction «the outcome will be ‘x’» with  x ! X  will be true.  

Again, it is up to the subsidiary theories to explain this deterministic unpredictability. In 

Everettian quantum theory, the explanation is that the measurer differentiates, during the 

measurement, into multiple instances, sharply agreeing that the output was one of the 

  x ! X , x " y  but not all perceiving the same one. 

8.6 Irreducible perturbation of one observable caused by measuring another 

The observable 
 
Xy  contains two or more attributes, none of which is distinguishable from 

y nor overlaps with y, by hypothesis. We shall now show that any measurer of 
 
Xy  must 

cause an irreducible perturbation of the substrate for some input attributes. In particular: 

 
    

x,x0( ) ! x, ‘x’( ){ }
x" Xy

! y,x0( ) ! y,k( ){ }!
#

$
%

&

'
(

!

  (8) 

 for all   x0  and k. In words: no device can both measure 
 
Xy  non-perturbatively if 

 
Xy  is 

sharp and leave the substrate unperturbed if the input has attribute y. And it follows that 

the perturbation is irreducible: nothing can subsequently undo it while leaving the 

outcome of the measurement in any information variable, for if it could, the overall 

process would be a counter-example to (8). 

To prove this, suppose that the task in (8) were possible.  Since y is an information 

attribute (hence, it is intrinsic) and   x0  is preparable from generic resources, k would be an 

intrinsic attribute because, by hypothesis, it could be produced from generic resources in 

the combination   y,k( )  with the intrinsic attribute y. 
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Moreover, k would be disjoint from all the ‘x’. For suppose there were a state in    k ! ‘x’ , for 

some ‘x’. That would imply that there exists a state a in y with the property that {a}, when 

presented to any measurer of 
 
Xy , produced an output with value ‘x’. Thus, by the results 

in Section 6, it would follow that   {a} ! x  (because 
 
Xy  is an observable), but this is a 

contradiction, as y does not intersect any x.  

Therefore k would be ensemble distinguishable from x. Thereby it would be possible, by 

performing the above task an unlimited number of times on the same instance of the 

substrate together with successive instances of the target with attribute   x0 , to produce an 

ensemble with attribute  k !( )  or   ÔxÕ!( )  as the case may be, and so k would be distinguishable 

from ‘x’, and so y would be distinguishable from x, contradicting the hypothesis. 

8.7 Quantisation 

The phrase ‘quantum jumps’ refers to a fiction. In reality the states of a quantum system 

form a continuum, and their dynamical evolution is continuous in both space and time. 

But with hindsight we can now see that the ‘quantisation’ after which quantum theory is 

named really refers to a property of quantum information. The discrete and the continuous 

are linked, in quantum theory, in a manner that was not previously guessed at, but is 

easily understood in terms of the constructor theory of information: each information 

observable of a quantum physical system has only a discrete set of attributes, but there is a 

continuous infinity of such observables, no union of which is an information observable. 

So in quantum physics, classical information is discrete and superinformation (quantum 

information) is continuous. 

8.8 Coherence and locally inaccessible information 

Another feature of quantum theory that is due to its permitting superinformation is the 

distinction between coherent and incoherent processes. Let w be a set of states of a 

superinformation medium M. A computation or supercomputation  C  on a proper subset 

v of w is coherent with respect to w if it is possible to perform it reversibly on w. That is to 

say, there exists a task  A  whose legitimate input set contains w, with   A !  and    A ~! , whose 
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restriction to the subtask whose legitimate input set is v is  C . M is a coherent medium with 

respect to information variables 
!

" #{ }  of M if each permutation task on each !" # can be 

performed coherently with respect to the union of all the attributes in the 
!

" #{ } . 

For example, the qubits of a universal quantum computer constitute a coherent 

superinformation medium, because it is a superinformation medium and all reversible 

classical computations in some computation basis can be performed reversibly on the set 

of all its pure states. 

Quantum entanglement, another distinctive feature of quantum information, is an 

example of a phenomenon that depends on coherence. It is usually characterised in terms 

of probabilistic quantities such as the correlations referred to in Bell’s theorem. But 

underlying those quantitative measures is a qualitative property: the presence of locally 

inaccessible information!  (Deutsch & Hayden 2000). In our present terminology, that means 

that some combined system   S1 ! S2  has information variables that are not the Cartesian 

products (nor subsets thereof) of information variables of   S1  and   S2 . 

So, let   S1  be a superinformation medium, as in section 7. Again let X be maximal. 

Consider any twofold observable contained in Y, which we denote as 
  
B1 = !0 , !1{ } " Y . We 

proved in section 8.5 that for any attribute y in Y there are at least two attributes in X 

which are not distinguishable from y. Let 
  
A1 = 0,1{ } ! X  be the observable including two 

attributes which are not distinguishable from 0’, and define   A2  and   B2  for   S2  analogously. 

Now suppose that   S1 ! S2  is coherent with respect to the variables 

  A1 × A2 ,B1 × A2 ,A2 × A2 ,B2 × A2{ } . All these are information observables, so that in 

particular we have   T
✓

 where 

   T = 0,0( )→ 0,0( ), 1,0( )→ 1,1( ), 0,1( )→ 0,1( ), 1,1( )→ 1,0( ){ } . (9) 

                                                
1 Entanglement is not the only property of quantum information for which locally inaccessible information is 
responsible. There is also the misleadingly named “non-locality without entanglement” of Bennett et al. 
(1999). 
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 T  is the familiar controlled-not computation. The coherence condition implies that in 

addition,    T∪ ′T( )✓  and     T ! ′T( )~! , where 

 
  

!T = !0 ,0( ) " # 1( ) , !0 ,1( ) " # 2( ) , !1 ,0( ) " # 3( ) , !1 ,1( ) " # 4( ){ } , (10) 

and 
 
! 1( )…! 4( )  are four distinct states of   S1 ! S2 . Because of the principle of locality II, 

these must have the ordered-pair form 
  
ψ 1( ) = a1( ) ,b1( )( ) , etc., where 

  
a1( )É a4( )  are attributes  

(not necessarily intrinsic) of   S1  and 
  
b1( )É b4( )  of   S2 . 

Now,    C = 0,1( ) , 1,1( ) , ′0 ,0( ) , ′1 ,0( ){ }  is an information variable. (Evidently one can 

measure it by first measuring   A2  and then either   A1  or   B1  according to the output of that 

measurement, which is necessarily sharp.) 

The effect of performing the task   T∪ !T  on the substrate when C is sharp must be to 

make the variable 
   
D = 0,1( ) , 1,0( ) , ψ 1( ) , ψ 3( ){ }  sharp with the corresponding values under 

(9) and (10). And D must also be an information variable because    T ! !T( )~  is also 

possible. 

Now consider the subset 
 

0,1( ) , ! 1( ){ }  of D. If this variable is locally distinguishable then 

!!
"

"
! # $%#

"
! " . But if 

!!
"

"
! #  then 

!
!

1
" 0,0( ) , which in turn implies, via the coherence 

property, that 
!

′" #"( )⊥ " #"( )  and hence that  !0 " 0 , contrary to construction. Similarly 

!!
"

"
! "  !  

!
!

"
" " #"( )  !  

!
!" #"( ) " $#"( )  !   !0 " 1, again contrary to construction. 

So 
 

0,1( ) , ! 1( ){ }  is an information variable of   S1 ! S2  whose attributes are not locally 

distinguishable. 

Note that the failure of local distinguishability in superinformation media is possible 

because they obey the principle of locality II, not disobey it as has been mistakenly 

supposed. 
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9 Concluding remarks 

The constructor theory of information relies only on the existence of the fundamental 

constructor-theoretic distinction between possible and impossible tasks. All its definitions 

and conjectured principles are constructor-theoretic. It reconciles apparently contradictory 

features of information: that of being an abstraction, yet governed by laws of physics; that 

of being physical, yet counter-factual. And it robustly unifies the theories of quantum and 

classical information.  
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